Crystal and Molecular Structure of Thiocarbonohydrazide Hemihydrochloride

By A. Braibanti," A. Tiripicchio, and M. Tiripicchio Camellini, Istituto di Chimica Generale, Università di Parma, Parma, Italy

Crystals of the title compound are monoclinic, space group $C 2 / c, Z=8$, unit cell dimensions: $a=18 \cdot 397(12)$, $b=9.039(6), c=13.847(11) \AA$, and $\beta=113.4(1)^{\circ}$. Intensities were measured by counter methods and the structure solved by direct methods and refined by least squares to $R 0.028$ for 2111 observed reflections. The basic units of the structure are dimers, $\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{NH} \cdot \mathrm{CS} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2} \ldots \mathrm{H}_{3} \stackrel{+}{\mathrm{N}} \cdot \mathrm{NH} \cdot \mathrm{CS} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}$, and chloride anions. Both component monomers are in the cis,trans-conformation, i.e. with one group $\cdot \mathrm{NH} \cdot \mathrm{NH}_{2}$ bent toward $\mathrm{C}-\mathrm{S}$ and the other toward the opposite side. Distances and angles in both thiocarbonohydrazide molecules are as expected, except for some $\mathrm{C}-\mathrm{S}$ bonds and the angles around the carbon atom. The groups $\mathrm{N}-\mathrm{CS}-\mathrm{N}$ are planar. Internal rotation angles of $-\mathrm{NH}_{2}$ and $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$ groups are discussed.

In connection with studies on compounds of thiocarbonohydrazide (tcaz) in solution ${ }^{1,2}$ and in the solid state, ${ }^{3-5}$ we have undertaken the study of the crystal structure of the hemihydrochloride, $\left[\mathrm{SC}\left(\mathrm{NH} \cdot \mathrm{NH}_{2}\right)_{2}\right]_{2}, \mathrm{HCl}$. The molecule of tcaz can assume the cis,trans- (I) or the cis,cis-conformation (II). The cis,trans-conformation

(I)

(II)
has been found in the neutral molecule ${ }^{3}$ and in complexes with metals; ${ }^{4}$ the cis,cis-conformation has been found in the dihydrochloride, $\left[\mathrm{SC}\left(\mathrm{NH} \cdot \mathrm{NH}_{2}\right)_{2}, 2 \mathrm{HCl},-\right.$ $2 \mathrm{H}_{2} \mathrm{O} .{ }^{5}$ The present structural determination has shown that the monoprotonated species also has the cis,trans-conformation.

EXPERIMENTAL

Hydrochloric acid was added to an aqueous solution of tcaz to pH ca. $2 \cdot 5$. On evaporation good transparent crystals of the compound were formed.

Unit cell parameters were determined from preliminary rotation and Weissenberg photographs and refined on an automated single-crystal diffractometer.

Crystal Data.- $\mathrm{C}_{2} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{~S}_{2}, \mathrm{HCl}$, Monoclinic. $\quad M=$ 248.766, $a=18 \cdot 397(12), \quad b=9 \cdot 039(6), \quad c=13 \cdot 847(11) \AA$, $\beta=113.4(1)^{\circ}, U=2113.2 \AA^{3}, D_{\mathrm{c}}=1.563, Z=8, D_{\mathrm{m}}=$ $1 \cdot 575, F(000)=1040$. Space group: $C 2 / c\left[C_{2 h}(6), \mathbb{N}^{\circ} 15\right]$ or $C c\left[C_{s}(4), \mathrm{N}^{\circ} 9\right]$ from systematic absences, the former determined from the structure analysis. Mo- K_{α} radiation $\lambda=0.71069 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=7.157 \mathrm{~cm}^{-1}$.

Intensity Data.-Intensity data were collected on a singlecrystal automated Siemens diffractometer, on line with a
\dagger For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
${ }^{1}$ A. Braibanti, E. Leporati, F. Dallavalle, and M. A. Pellinghelli, Inorg. Chim. Acta, 1968, 2, 449.
${ }^{2}$ A. Braibanti, F. Dallavalle, and E. Leporati, Inorg. Chim. Acta, 1969, 3, 459.

3 A. Braibanti, A. Tiripicchio, and M. Tiripicchio Camellini, Acta Cryst., 1969, B, 25, 2286.

Siemens 304 P computer, by using Zr -filtered $\mathrm{Mo}-K_{\alpha}$ radiation and the $\omega-2 \theta$ scan technique. A rather irregular prism of dimensions ca. $0.18 \times 0.18 \times 0.26 \mathrm{~mm}$ was aligned with its [010] axis along the ϕ axis of the diffractometer and all the reflections with $2 \theta \leqslant 58^{\circ}$ were collected. 2810 Independent reflections were measured of which 2111 were used in the crystal analysis, reflections whose intensities were less than twice their standard deviations $\left\{\sigma^{2}(I)=\right.$ [total counts $\left.\left.+(0.005 I)^{2}\right]\right\}$ being considered unobserved. Corrections for Lorentz and polarization factors were made in the usual way. No correction was made for absorption. An absolute scale factor and the mean isotropic temperature factor were obtained by Wilson's ${ }^{6}$ method. The normalized structure factors, E_{h} values were then computed.

Structure Determination and Refinement.-The structure was solved by means of the Σ_{2} Sayre relationship in the symbolic addition procedure. ${ }^{7}$ The reflections $732(|E|=$ $3.06)$ and $24 \overline{1}(|E|=2.72)$ were chosen to define the origin. Reflections $222(|E|=3 \cdot 73)$, $62 \overline{6}(|E|=3 \cdot 03), 954(|E|=$ $2 \cdot 82$), and $11,11, \overline{2}(|E|=3 \cdot 36)$ were assigned the symbols, a, b, c, and d respectively. By applying the Σ_{2} formula the solution for the symbols came out to be,,,---- . The signs of 328 reflections with $|E| \geqslant 1.60$ were determined and used to compute an E map that revealed the whole structure except for the hydrogen atoms. A structurefactor calculation using atomic parameters obtained from the E map gave $R 0.137$, which decreased to 0.085 after seven cycles of block-diagonal least-squares refinement with isotropic temperature factors. Anisotropic temperature factors were introduced and R decreased to 0.045 after six cycles. At this stage, a difference-Fourier synthesis made it possible to determine the positions of the hydrogen atoms, which were then included, with isotropic temperature factors, in subsequent refinement. The final R was 0.028 (observed reflections only). Unit weights were used for all the reflections in the complete refinement.

The final atomic co-ordinates and thermal parameters are listed in Tables 1 and 2. Observed and calculated structure factors are listed in Supplementary publication No. SUP 20482 (15 pp., 1 microfiche). \dagger

Atomic scattering factors for sulphur, chlorine, nitrogen,
4 F. Bigoli, A. Braibanti, A. M. Manotti Lanfredi, A. Tiripicchio, and M. Tiripicchio Camellini, Inorg. Chim. Acta, 1971, 5, 392.
${ }_{5}$ A. Braibanti, M. A. Pellinghelli, A. Tiripicchio, and M. Tiripicchio Camellini, Inorg. Chim. Acta, 1971, 5, 523.
${ }^{8}$ A. J. C. Wilson, Nature, 1942, 150, 152.
${ }^{7}$ G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1970, B, 26, 274.
and carbon were taken from ref. 8, and for hydrogen from ref. 9.
All calculations were performed on a CDC 6600 computer of the Centro di Calcolo Elettronico Interuniversitario

Table 1
Final fractional atomic co-ordinates ($\times 10^{4}$) with estimated standard deviations in parentheses

	x	y	z
$\mathrm{Cl}(1)$	5000	5827(1)	2500
$\mathrm{Cl}(2)$	5000	0540(1)	2500
S(1)	3025(1)	10141(1)	9195(1)
$\mathrm{S}(2)$	$3564(1)$	4883(1)	4333(1)
N(1)	$2684(1)$	7921(2)	7816(1)
$\mathrm{N}(2)$	3265(1)	8458(2)	7473(2)
$\mathrm{N}(3)$	1959(1)	8023(2)	8822(1)
$\mathrm{N}(4)$	1564(1)	6707(2)	8336(1)
$\mathrm{N}(5)$	4125(1)	7139(2)	5688(1)
$\mathrm{N}(6)$	3720 (1)	$6515(2)$	$6272(1)$
N(7)	4586(1)	6987(2)	4377(1)
$\mathrm{N}(8)$	$5065(1)$	8207(2)	4838(1)
$\mathrm{C}(1)$	2525(1)	8603(2)	8563(1)
$\mathrm{C}(2)$	4123(1)	6406(2)	4838(1)
$\mathrm{H}(1)$	2418(13)	7078(23)	7488(17)
H(2)	3082(14)	9322(27)	7153(18)
$\mathrm{H}(3)$	3764(15)	8670(29)	8107(19)
H(4)	1842(12)	8482(24)	9330(16)
H(5)	1630(14)	5993(27)	8889(18)
H(6)	1025(12)	6896(24)	7964(16)
H(7)	4476(12)	7877(23)	6025(16)
H(8)	4009(12)	5754(23)	6691(15)
H(9)	3589(14)	7276(27)	6655(18)
$\mathrm{H}(10)$	3224(12)	6058(23)	5774(16)
$\mathrm{H}(11)$	4596(13)	6496(26)	3812 (17)
H(12)	4962(15)	8925(29)	4389(19)
H(13)	5612(14)	7876(28)	5003(19)

Table 2
Thermal parameters $\left(\AA^{2}\right)^{*}$ with estimated standard deviations $\left(\times \mathbf{1 0}^{2}\right)$ in parentheses

	B_{11} or B	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{Cl}(1)$	2.66(2)	2.71(2)	2.25(2)	0.00(0)	1.27(2)	0.00(0)
$\mathrm{Cl}(2)$	2-36(2)	2.53(2)	3-03(2)	0.00(0)	0.97(2)	$0 \cdot 00$ (0)
S(1)	2.46(2)	2.49(2)	3-14(2)	-0.38(1)	1.40 (1)	-0.49(2)
S(2)	3.24(2)	2.61 (2)	2.52(2)	$-0.75(2)$	1.20(2)	-0.57(2)
N(1)	$3 \cdot 05(6)$	1.88(5)	3.18(6)	-0.12(5)	$2 \cdot 15(5)$	-0.05(5)
N(2)	4.64(8)	2.48(6)	$5 \cdot 31(9)$	-0.36(6)	$4 \cdot 08(8)$	-0.42(6)
N(3)	$2 \cdot 53(6)$	2.44(6)	$2 \cdot 81$ (6)	$-0.35(5)$	$1.58(5)$	-0.40(5)
N(4)	2.78(6)	$2 \cdot 29(6)$	$3 \cdot 20$ (6)	$-0.47(5)$	1.55 (5)	-0.30 (5)
N(5)	$3 \cdot 29(6)$	2.27(6)	$2 \cdot 84$ (6)	-0.60(5)	$2 \cdot 06(5)$	-0.47(5)
N(6)	$2 \cdot 70$ (6)	2-18(5)	$2 \cdot 72(6)$	-0.10(5)	1.69 (5)	-0.08(5)
N(7)	$3 \cdot 61$ (7)	$2 \cdot 69$ (6)	$2 \cdot 94$ (6)	-0.68(6)	$2 \cdot 13(6)$	-0.48(5)
N(8)	$4 \cdot 54$ (8)	3.00(7)	4-11(8)	$-1.36(7)$	2-77(7)	-0.75 (6)
C(1)	1-87(5)	1.92 (6)	2.24(6)	$0 \cdot 44$ (5)	0.92 (5)	0.31 (5)
$\mathrm{C}(2)$	2.22(6)	1.93(6)	2.26(6)	0.27(5)	0.95(5)	0.05(5)
$\mathrm{H}(1)$	3.62(45)					
$\mathrm{H}(2)$	$5 \cdot 53(61)$					
$\mathrm{H}(3)$	6-16(65)					
$\mathrm{H}(4)$	$4 \cdot 00$ (49)					
$\mathrm{H}(5)$	$5 \cdot 17(58)$					
$\mathrm{H}(6)$	3.93(48)					
$\mathrm{H}(7)$	$3 \cdot 70$ (47)					
$\mathrm{H}(8)$	3.46(45)					
$\mathrm{H}(9)$	5-22(59)					
$\mathrm{H}(10)$	3-56(46)					
H(1)	4.56(53)					
$\mathrm{H}(12)$	6-13(65)					
H(13)	$5 \cdot 67(61)$					
		${ }_{i j}=8 \pi^{2}$	${ }_{i j}$ refer	to a^{*}, b^{*}		

dell'Italia Nord-Orientale (Bologna), with the programs written by Immirzi. ${ }^{10}$
${ }^{8}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A, 24, 321.

- R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{10}$ A. Immirzi, Ricerca Sci., 1967, 37, 743.

discussion

The basic units of the crystal structure are dimers, $\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{NH} \cdot \mathrm{CS} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2} \ldots \mathrm{H}_{3} \stackrel{+}{\mathrm{N}} \cdot \mathrm{NH} \cdot \mathrm{CS} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2} \quad$ and chloride anions. The two molecules of the dimer (Figure 1) are held together by the hydrogen bond

Figure 1 The dimer showing the atomic numbering system
$[\mathrm{N}(6)-\mathrm{H}(9) \cdots \mathrm{N}(2) 2 \cdot 767(3) \AA]$ which is short compared with normal values for hydrogen bonds between nitrogen atoms. Both molecules of tcaz are in the

Table 3
Main interatomic bond distances and angles ${ }^{\boldsymbol{a}}$
(a) Distances (\AA)

$\mathrm{C}(1)-\mathrm{S}(1)$	$1.705(2)$	$\mathrm{C}(2)-\mathrm{S}(2)$	1-694(2)
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.333(3)$	$\mathrm{C}(2)-\mathrm{N}(5)$	1.349(2)
$\mathrm{C}(1)-\mathrm{N}(3)$	$1 \cdot 336(3)$	$\mathrm{C}(2)-\mathrm{N}(7)$	$1 \cdot 327(3)$
$\mathrm{N}(1)-\mathrm{N}(2)$	1.417(3)	$\mathrm{N}(5)-\mathrm{N}(6)$	1-416(3)
$\mathrm{N}(3)-\mathrm{N}(4)$	1-417(3)	$\mathrm{N}(7)-\mathrm{N}(8)$	1-415(3)
$\stackrel{\mathrm{N}(1)-\mathrm{H}(1)}{ }$	$0.92(2)$	$\mathrm{N}(5)-\mathrm{H}(7)$	$0.92(2)$
$\mathrm{N}(2)-\mathrm{H}(2)$	$0 \cdot 90$ (2)	$\mathrm{N}(6)-\mathrm{H}(8)$	$0 \cdot 92$ (2)
$\mathrm{N}(2)-\mathrm{H}(3)$	1.00(3)	$\mathrm{N}(6)-\mathrm{H}(9)$	0.96 (2)
$\mathrm{N}(3)-\mathrm{H}(4)$	0.91 (2)	$\mathrm{N}(6)-\mathrm{H}(10)$	0.99(2)
$\mathrm{N}(4)-\mathrm{H}(5)$	$0 \cdot 97(2)$	$\mathrm{N}(7)-\mathrm{H}(11)$	0.92(2)
$\mathrm{N}(4)-\mathrm{H}(6)$	0.93(2)	$\mathrm{N}(8)-\mathrm{H}(12)$	0.87(3)
		$\mathrm{N}(8)-\mathrm{H}(13)$	0.99(3)
(b) Angles (deg.)			
S(1)-C(1)-N(3)	120.1(1)	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(7)$	120.7(1)
S(1)-C(1)-N(1)	122.4(2)	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(5)$	123.4(2)
$\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{N}(1)$	117.5.2)	$\mathrm{N}(7)-\mathrm{C}(2)-\mathrm{N}(5)$	115•8(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	121.9(2)	$\mathrm{C}(2)-\mathrm{N}(5)-\mathrm{N}(6)$	118.9(2)
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{N}(4)$	$120 \cdot 6(2)$	$\mathrm{C}(2)-\mathrm{N}(7)-\mathrm{N}(8)$	120.3(1)
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{H}(4)$	118.4(14)	$\mathrm{C}(2)-\mathrm{N}(7)-\mathrm{H}(11)$	118.3(15)
$\mathrm{H}(4)-\mathrm{N}(3)-\mathrm{N}(4)$	120.9(14)	$\mathrm{H}(11)-\mathrm{N}(7)-\mathrm{N}(8)$	120.8(16)
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{H}(5)$	107.7(14)	$\mathrm{N}(7)-\mathrm{N}(8)-\mathrm{H}(12)$	110.0(17)
$\mathrm{H}(5)-\mathrm{N}(4)-\mathrm{H}(6)$	109.2(21)	$\mathrm{H}(12)-\mathrm{N}(8)-\mathrm{H}(13)$	111.2(16)
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{H}(6)$	109.9(13)	$\mathrm{N}(7)-\mathrm{N}(8)-\mathrm{H}(13)$	106.7(15)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	121-8(15)	$\mathrm{C}(2)-\mathrm{N}(5)-\mathrm{H}(7)$	124.0(14)
$\mathrm{H}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	116.2(15)	$\mathrm{N}(6)-\mathrm{N}(5)-\mathrm{H}(7)$	115.0(14)
$\mathrm{H}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	108.8(16)	$\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{H}(10)$	108.5(13)
$\mathrm{H}(3)-\mathrm{N}(2)-\mathrm{H}(2)$	107-4(22)	$\mathrm{H}(10)-\mathrm{N}(6)-\mathrm{H}(9)$	108.7(20)
$\mathrm{H}(2)-\mathrm{N}(2)-\mathrm{N}(1)$	106.2(18)	$\mathrm{H}(8)-\mathrm{N}(6)-\mathrm{N}(5)$	110.8(14)
		$\mathrm{H}(9)-\mathrm{N}(6)-\mathrm{H}(8)$	113.4(19)
		$\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{H}(9)$	109.6(15)
		$\mathrm{H}(8)-\mathrm{N}(6)-\mathrm{H}(10)$	105.6(18)

a The estimated standard deviations in parentheses in this and the following Tables are in units of the last digit.
cis,trans-conformation. The two molecules are almost identical, although there are small differences in distances and angles (Table 3) which are statistically significant. The bond $\mathrm{C}(1)-\mathrm{S}(1)[1 \cdot 705(2) \AA]$ in the neutral molecule is only slightly longer than $\mathrm{C}(2)-\mathrm{S}(2)$ $[1 \cdot 694(2) \AA]$ in the protonated species, but the former is closer to the value in neutral tcaz with C-S $1.724(1) \AA,{ }^{3}$ and the latter to that in the biprotonated form [$\mathrm{C}-\mathrm{S}$
$1 \cdot 645(3) \AA]^{5}$ The same can be said for the angles $\mathrm{N}-\mathrm{C}-\mathrm{N}$. The angle $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(3) \quad 117 \cdot 5(2)^{\circ}$ can be

Table 4

Equations of best least-squares planes in the form $A X+$ $B Y+C Z=D$ where $X=x, Y=y$, and Z is perpendicular to X, Y. Distances (\AA) of relevant atoms from the planes are given in square brackets

Plane (1):
$\mathrm{N}(\mathrm{l}), \mathrm{C}(1), \mathrm{S}(1), \quad-0.4396 X+0.5747 Y-0.6903 Z=3.0209$ N(3)
$[\mathrm{N}(1)-0.0023(16), \mathrm{C}(1) \quad 0.0058(16), \mathrm{S}(1)-0.0013(13)$, $\mathrm{N}(3)-0.0022(16), \mathrm{H}(1)-0.017(22), \mathrm{H}(2) \quad 0.008(22), \mathrm{N}(2)$ $0.0247(22), \mathrm{N}(4)-0.0575(16)]$

Plane (2):

$$
\begin{aligned}
& \mathrm{N}(5), \mathrm{C}(2), \quad-0.5994 X+0.5725 Y-0.5801 Z=-3.0893 \\
& \mathrm{~S}(2), \mathrm{N}(7)
\end{aligned}
$$

$[\mathrm{N}(5) 0.0060(17), \mathrm{C}(2)-0.0155(17), \mathrm{S}(2) 0.0036(14), \mathrm{N}(7)$ $0.0059(17), \mathrm{H}(7)-0.127(22), \mathrm{H}(11)-0.044(24), \mathrm{N}(6)$ $-0.1297(17), \mathrm{N}(8)-0.0876(17)]$
compared with $\mathrm{N}-\mathrm{C}-\mathrm{N} 117 \cdot 5(7)^{\circ}$ in the neutral molecule, ${ }^{3}$ whereas $\mathrm{N}(5)-\mathrm{C}(2)-\mathrm{N}(7)\left[115 \cdot 8(2)^{\circ}\right]$ in the mono-
electron cloud occurs over the conjugate system of the two thioureide groups, $\mathrm{N}-\mathrm{CS}-\mathrm{N}$. The $\mathrm{N}-\mathrm{N}$ bonds $[1 \cdot 417(2), 1 \cdot 417(3), 1 \cdot 416(3), 1 \cdot 415(3) \AA$, mean $1 \cdot 416(3) \AA]$ of the hydrazinic groups are equal, and seem to be unaffected in tcaz by the presence of the proton; their values are comparable with those $[1 \cdot 418(6) \AA]$ in the diprotonated species ${ }^{5}$ and $[1 \cdot 404(9)$ and $1 \cdot 405(14) \AA]$ in the neutral molecule. ${ }^{3}$
The thioureide groups $\mathrm{N}-\mathrm{CS}-\mathrm{N}$ are practically planar, confirming conjugation; although the statistical analysis reveals that there are statistically significant deviations, these are actually very small (Table 4). The planarity is confirmed by the sum of the angles around carbon which is $360 \cdot 0^{\circ}$ for $C(1)$ and $359 \cdot 9^{\circ}$ for $C(2)$.
The positions of the hydrogen atoms as deduced from the difference-Fourier map are in accordance with $s p^{3}$ hybridization for $\mathrm{N}(2), \mathrm{N}(4), \mathrm{N}(6), \mathrm{N}(8)$ and with $s p^{2}$ hybridization for $\mathrm{N}(1), \mathrm{N}(3), \mathrm{N}(5), \mathrm{N}(7)$.
The torsion angles (Table 5) as calculated from the projection on the plane normal to the $\mathrm{N}-\mathrm{N}$ axis show (Figure 2) that the cis-group $-\mathrm{NH}_{2}$ formed by $\mathrm{N}(2)$, $H(2), H(3)$ is in the + synclinal position with respect to

Table 5
Torsion angles of hydrazinic groups

$(b)-(e)$	$115 \cdot 49$	$(a)-(b)$	$118 \cdot 04$
$(c)-(e)$	125.92	$(b)-(d)$	$116 \cdot 72$
$(b)-(c)$	118.59	$(a)-(d)$	$125 \cdot 24$

protonated species is closer to $\mathrm{N}-\mathrm{C}-\mathrm{N}\left[111 \cdot 1(2)^{\circ}\right]$ in the diprotonated cis,cis-species. ${ }^{5}$ The small differences in the $\mathrm{C}-\mathrm{N}$ bonds could also be dependent upon the changing of the single-double-bond character of the $\mathrm{C}-\mathrm{S}$ bond. This means that a small redistribution of the
and $N(8)$ are in the - synclinal positions. The rotation of $-\mathrm{NH}_{2}$ groups could also be defined by the position of the nitrogen lone-pair as deduced from the bisector of the angle $\mathrm{H}-\mathrm{N}-\mathrm{H}$. Deviations from the perfectly + synclinal positions are 9° for the cis-group $\mathrm{N}(2)$,
and from the - synclinal position 2.8 and -3.6° for the trans-groups $\mathrm{N}(4)$ and $\mathrm{N}(8)$. The cis-group $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$, corresponding to $\mathrm{N}(6)$, is rotated ca. 20° from the exact + synclinal position with respect to the $\mathrm{C}-\mathrm{N}$ bond.

Some relevant implications can be inferred from these rotation angles: (i) the $-\mathrm{NH}-\mathrm{NH}_{2}$ groups as such in the cis- and trans-conformations are opposite conformers; they are in fact related to one another not only by 180° rotation around the bond $\mathrm{C}-\mathrm{N}$ (cis-trans) but also by

ligure 2 Rotation angles of hydrazinic groups $\cdot \mathrm{NH} \cdot \mathrm{NH}_{2}$ around $\mathrm{N}-\mathrm{N}$; conformations: (a) cis, + synclinal, (b) trans, - synclinal, (c) cis, + synclinal, (d) trans, - synclinal
180° rotation + synclinal to - synclinal around the $\mathrm{N}-\mathrm{N}$ bond; (ii) in the neutral and chelated ${ }^{4}$ species the hydrazinic groups possess equal orientations with respect to $\mathrm{C}-\mathrm{N}$ but different conformations around $\mathrm{N}-\mathrm{N}$, because in complexes the lone pair of the cis-group, directed toward the metal atom, is in - synclinal conformation; (iii) the protonated group $\mathrm{N}(6)$ tends to bring one hydrogen atom $[\mathrm{H}(10)]$ closer to $\mathrm{S}[\mathrm{S}(2) \cdots$ $\mathrm{H}(10) 2 \cdot 55 \AA$] than it would be in an exactly + synclinal conformation $[$ e.g. $\mathrm{S}(1) \cdots \mathrm{H}(2) \quad 2 \cdot 96, \mathrm{~S}(1) \cdots \mathrm{H}(3)$ $2.74 \AA$]; the promixity between $\mathrm{S}(2)$ and $\mathrm{H}(10)$ could be interpreted as an intramolecular hydrogen bond, but this is not in accordance with the observed shortening of sulphur-carbon bonds in protonated species of tcaz. There may be a possible explanation of (iii) in terms of the field effect of protons on the electrons of the conjugated system $\mathrm{S}_{-} / \mathrm{CH}_{\mathrm{NH}-}^{\mathrm{NH}}$

The trans, trans species of tcaz are not expected to be stable because of the repulsion between lone pairs of two terminal groups $-\mathrm{NH}_{2}$.
The shortest approach distances (Table 6) between chloride ions and nitrogen atoms are $\mathrm{N}(5) \cdots \mathrm{Cl}\left(2^{\text {III }}\right)$ $3 \cdot 175(3), \mathrm{N}(6) \cdots \mathrm{Cl}\left(1^{\mathrm{III}}\right) 3 \cdot 121(3)$, and $\mathrm{N}(7) \cdots \mathrm{Cl}\left(1^{\mathrm{IV}}\right)$ $3 \cdot 184(3) \AA$. These are hydrogen bonds, which are not perfectly linear as shown by the angles $\mathrm{N}(5)-\mathrm{H}(7) \cdots$
$\mathrm{Cl}\left(2^{\mathrm{III}}\right) \quad 148(2), \quad \mathrm{N}(6)-\mathrm{H}(8) \cdots \mathrm{Cl}\left(1^{\mathrm{III}}\right) \quad 161(2)$, and $\mathrm{N}(7)-\mathrm{H}(11) \cdots \mathrm{Cl}\left(1^{\mathrm{IV}}\right) \quad 161(2)^{\circ}$. One chlorine atom

Table 6
Geometry of hydrogen bonds *
(a) Distances (\AA)

$\mathrm{N}(6)-\mathrm{H}(9)$	$\mathrm{N}(2)$	2.767(3)
H(9)	- N(2)	1.82(3)
$\mathrm{N}(1)-\mathrm{H}(1)$.	$\cdots \cdot \mathrm{S}\left(1^{1}\right)$	3.590(3)
$\mathrm{H}(1)$.	S(1)	2.77(2)
$\mathrm{N}(3)-\mathrm{H}(4)$	S(2II)	3.497(4)
H(4)	- S (21I)	2.59(2)
$\mathrm{N}(5)-\mathrm{H}(7)$	- $\mathrm{Cl}\left(2^{\text {IIII }}\right.$)	3.175(3)
H(7)	- $\mathrm{Cl}\left(2^{\text {III }}\right.$)	2.36(2)
$\mathrm{N}(6)-\mathrm{H}(8)$	$\cdots \mathrm{Cl}\left({ }^{\text {IIII }}\right)$	3.121(3)
$\mathrm{H}(8)$	- $\mathrm{Cl}\left(11^{11 I}\right)$	2.24(2)
$\mathrm{N}(7)-\mathrm{H}(11)$	$\cdots \mathrm{Cl}\left(\mathrm{l}^{\text {IV }}\right.$)	3.184(3)
$\mathrm{H}(11)$	Cl(119)	$2 \cdot 30$ (2)
$\mathrm{N}(6)-\mathrm{H}(10)$	S(1^{1})	3.259(6)
$\mathrm{H}(10)$	S(11)	2-46(2)

(b) Angles (deg.)

$\mathrm{N}(6)-\mathrm{H}(9)$.	- N (2)	169.8(23)
$\mathrm{H}(9)-\mathrm{N}(6)$	N(2)	$6 \cdot 7(15)$
$\mathrm{N}(1)-\mathrm{H}(1)$	$\cdot \mathrm{S}\left(\mathbf{1}^{\mathbf{1}}\right)$	149.2(19)
$\mathrm{H}(1)-\mathrm{N}(1)$.	- (1 $^{\text {I }}$)	23.2(15)
$\mathrm{N}(3)-\mathrm{H}(4)$	S(2 $2^{\text {II }}$)	176.1(18)
$\mathrm{H}(4)-\mathrm{N}(3)$	- $\mathrm{S}\left(2^{\text {III }}\right.$)	2-9(14)
$\mathrm{N}(5)-\mathrm{H}(7)$.	$\cdots \mathrm{Cl}\left(2^{\text {III }}\right.$)	147.5(19)
$\mathrm{H}(7)-\mathrm{N}(5)$.	$\cdot \mathrm{Cl} 2^{\text {III) }}$	23.6(14)
$\mathrm{N}(6)-\mathrm{H}(8)$.	$\cdot \mathrm{Cl}\left(\mathbf{1}^{\mathrm{III}}\right)$	161.0(20)
$\mathrm{H}(8)-\mathrm{N}(6)$.	$\cdot \mathrm{Cl}\left(\mathbf{1}^{111}\right)$	13.5(14)
$\mathrm{N}(7)-\mathrm{H}(11)$	- $\mathrm{Cl}\left(\mathbf{1}^{\text {IV }}\right.$)	161.0(21)
$\mathrm{H}(11)-\mathrm{N}(7)$	- $\mathrm{Cl}\left(1^{\text {IV }}\right.$)	13.6(16)
$\mathrm{N}(6)-\mathrm{H}(10)$	S(11)	137.6(16)
$\mathrm{H}(10)-\mathrm{N}(6)$	S(11)	30.6(13)

* Roman numerals defined in footnote to Table 7.

Figure 3 Clinographic projection of the structure with intermolecular hydrogen bonds
[$\mathrm{Cl}(\mathbf{1})]$ bridges two different dimers (Figure 3) and it appears to be the main interdimer link in the crystal, whereas the other chlorine atom $[\mathrm{Cl}(2)]$ is bound to one nitrogen only. Both $\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$ and NH groups are effective
in these bonds. Apart from the previously mentioned $\mathrm{N}(6) \cdots \mathrm{N}(2)$ short hydrogen bond, there are no other hydrogen bonds between nitrogen atoms.

Donohue has said ${ }^{11}$ that the $\mathrm{N} \cdot \mathrm{S}$ distance alone is not a sufficient criterion in ascertaining whether such an interaction is a hydrogen bond, the distance $\mathrm{H} \cdots \mathrm{S}$ and the angles $\mathrm{N}-\mathrm{N} \cdot \mathrm{S}$ also requiring to be taken into account. The interaction $\mathrm{N}(3) \cdots \mathrm{S}\left(2^{\mathrm{II}}\right) 3 \cdot 497(4) \AA$, with $\mathrm{H}(4) \cdots \mathrm{S}\left(2^{\mathrm{II}}\right) 2 \cdot 59(2) \AA$ and $\mathrm{H}(4)-\mathrm{N}(3) \cdots \mathrm{S}\left(2^{\mathrm{II}}\right)$ $3(1)^{\circ}$ must therefore be considered a hydrogen bond. Weaker hydrogen bonds could also be considered: $\mathrm{N}(1) \cdots \mathrm{S}\left(\mathbf{1}^{\mathrm{I}}\right) \mathbf{3 \cdot 5 9 0 (3)} \AA$, with $\mathrm{H}(1) \cdots \mathrm{S}\left(\mathbf{1}^{\mathrm{I}}\right) 2 \cdot 77(2) \AA$ and $\mathrm{H}(1)-\mathrm{N}(1) \cdots \mathrm{S}\left(\mathbf{1}^{\mathrm{I}}\right) \quad 23(2)^{\circ}$, and $\mathrm{N}(6) \cdots \mathrm{S}\left(\mathbf{1}^{\mathrm{I}}\right)$ $3 \cdot 259(6) \AA$, with $\mathrm{H}(10) \cdots \mathrm{S}\left(\mathbf{1}^{\mathrm{I}}\right) 2 \cdot 46(2) \AA$ and $\mathrm{H}(10)^{-}$ $\mathrm{N}(6) \cdots \mathrm{S}\left(\mathrm{l}^{\mathrm{I}}\right) \quad 31(1)^{\circ}$. Other contacts (Table 7)

Table 7
Shortest intermolecular distances (\AA)

		$\left.\mathrm{N}(4) \cdots \mathrm{N} 2^{\mathrm{I}}\right)$	$3 \cdot 203(3)$
$\mathrm{N}(1) \cdots \mathrm{S}\left(2^{\mathrm{III}}\right)$	$3 \cdot 280(3)$	$\mathrm{N}(6) \cdots \mathrm{N}\left(3^{\mathrm{I}}\right)$	$3 \cdot 378(3)$
$\mathrm{N}(5) \cdots \mathrm{S}\left(1^{\mathrm{V}}\right)$	$3 \cdot 330(3)$	$\mathrm{N}(1) \cdots \mathrm{S}\left(2^{\mathrm{X}}\right)$	$3 \cdot 555(3)$
$\mathrm{N}(4) \cdots \mathrm{S}\left(2^{\mathrm{III}}\right)$	$3 \cdot 671(6)$	$\mathrm{N}(2) \cdots \mathrm{S}\left(2^{\mathrm{x}}\right)$	$3 \cdot 625(4)$
$\mathrm{N}(4) \cdots \mathrm{S}\left(1^{\mathrm{VI}}\right)$	$3 \cdot 605(4)$	$\mathrm{N}(8) \cdots \mathrm{S}\left(1^{\mathrm{XI}}\right)$	$3 \cdot 669(6)$
$\mathrm{N}(8) \cdots \mathrm{S}\left(2^{\mathrm{VII}}\right)$	$3 \cdot 631(4)$	$\mathrm{N}(2) \cdots \mathrm{Cl}\left(2^{\mathrm{VII}}\right)$	$3 \cdot 304(6)$
$\mathrm{N}(4) \cdots \mathrm{Cl}\left(2^{\mathrm{VIII}}\right)$	$3 \cdot 331(4)$	$\mathrm{N}(8) \cdots \mathrm{N}\left(8^{\mathrm{XII}}\right)$	$3 \cdot 294(3)$
$\mathrm{N}(3) \cdots \mathrm{Cl}\left(1^{\mathrm{IX}}\right)$	$3 \cdot 490(5)$	$\mathrm{N}(3) \cdots \mathrm{N}\left(3^{\mathrm{VI}}\right)$	$3 \cdot 216(4)$
$\mathrm{N}(4) \cdots \mathrm{Cl}\left(1^{\mathrm{IX}}\right)$	$3 \cdot 456(4)$	$\mathrm{N}(6) \cdots \mathrm{Cl}\left(2^{\mathrm{III}}\right)$	$3 \cdot 513(3)$

Roman numerals as superscripts refer to the following
transformations relative to the reference molecule at x, y, z :

$$
\begin{array}{lr}
\text { I } \frac{1}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z & \text { VII } 1-x, 1-y, 1-z \\
\text { II } \frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z & \text { VIII }-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z \\
\text { III } x, 1-y, \frac{1}{2}+z & \text { IX }-\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z \\
\text { IV } 1-x, y, \frac{1}{2}+z & \text { X } \frac{1}{2}-x, \frac{3}{2} \frac{1}{2}, 1-z \\
\text { V } x, 2-y,-\frac{1}{2}+z & \text { XI } 1-x, y, \frac{3}{2}-z \\
\text { VI } \frac{1}{2}-x, \frac{3}{2}-y, 2-z & \text { XII } 1-x, 2-y, 1-z
\end{array}
$$

between nitrogen and sulphur, though shorter than these, can in no way be considered as hydrogen bonds, a result which supports Donohue's point of view. ${ }^{11}$ Generally, each -NH is effective in at least one hydrogen bond, $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$ taking part in three, whereas only one $-\mathrm{NH}_{2}$ group [$\mathrm{N}(2)$] participates, as acceptor, to one hydrogen bond.

The i.r. spectra of thiocarbonohydrazide, thiosemicarbazide, thiocarbonohydrazide dihydrochloride dihydrate, thiocarbonohydrazide hemihydrochloride, and bis(thio-carbonohydrazide- N, S)-cadmium dichloride have been taken as KBr discs. The spectra of the pure molecule, thiocarbonohydrazide and thiosemicarbazide, are simpler and with better defined peaks than those of the protonated and complex species. The spectrum of tcaz has been interpreted by Burns, ${ }^{12}$ and on the basis of his assignments the peaks can be subdivided into four groups (i) 3310,3275 , and $3201 \mathrm{~cm}^{-1}$ are attributed to the stretch-

[^0]ing vibrations of NH_{2} and NH , (ii) $1638,1619,1538$, and $1489 \mathrm{~cm}^{-1}$ are attributed to the bending vibrations of NH_{2} and NH mixed with some contributions from the stretching vibration, $v(\mathrm{C}-\mathrm{N})$; (iii) $1285 \mathrm{~cm}^{-1}$ is attributed to the combined stretching vibrations $v(\mathrm{C}-\mathrm{N})$ and $v(\mathrm{C}-\mathrm{S})$; and (iv) 1011 and $931 \mathrm{~cm}^{-1}$ are attributed to the stretching, $v(\mathrm{~N}-\mathrm{N})$, mixed with some bending, $\alpha(\mathrm{CNN})$ and stretching, $v(\mathrm{C}-\mathrm{S})+v(\mathrm{C}-\mathrm{N})$, respectively. Group (i) is maintained in the spectra of every compound except in the hydrated dichloride where this group of maxima is confused in broad smooth bands, in accordance with the protonation of the groups themselves and with the presence of water molecules in the structure. In the hemichloride these maxima appear at 3318,3290 , and $3200 \mathrm{~cm}^{-1}$, which are practically unchanged with respect to the simple molecule. In the group (ii), the two maxima around $1620 \mathrm{~cm}^{-1}$ overlap each other, thus forming a broad band at $1612-1590 \mathrm{~cm}^{-1}$, and the two maxima near $1500 \mathrm{~cm}^{-1}$ overlap in a second broad band at $1520-1482 \mathrm{~cm}^{-1}$. The whole group (ii) of bands is slightly shifted towards low frequencies. The peak (iii) for tcaz and thiosemicarbazide at $1285 \mathrm{~cm}^{-1}$ appears in the hemichloride to be split into three bands at 1345, 1268 , and $1225 \mathrm{~cm}^{-1}$. This is consistent with the finding that the $\mathrm{C}-\mathrm{S}$ and $\mathrm{N}-\mathrm{C}$ bond lengths are those distances which are shown by the structure determinations to have been changed. On the basis of the variations of the bond lengths one expects that $v(\mathrm{C}-\mathrm{S})$ is shifted toward higher and $v(\mathrm{C}-\mathrm{N})$ toward lower frequencies than in the simple molecule. According to this interpretation the band at $1345 \mathrm{~cm}^{-1}$ could be attributed to $v(\mathrm{C}-\mathrm{S})$, and those at 1268 and $1225 \mathrm{~cm}^{-1}$ to $v(\mathrm{C}-\mathrm{N})$. In the group (iv), the band at $1010 \mathrm{~cm}^{-1}$ due mainly to $v(\mathrm{~N}-\mathrm{N})$ follows the empirical rule ${ }^{13}$ that the stretching vibration of the hydrazinic group is shifted toward higher frequencies with respect to the band at $885 \mathrm{~cm}^{-1}$ in hydrazine ${ }^{14}$ where $\mathrm{N}-\mathrm{N}$ is 1.46 $\AA .{ }^{15}$ In the hemichloride there are two bands at 1050 and $978 \mathrm{~cm}^{-1}$ which could perhaps be attributable to the stretching vibrations of two different hydrazinic groups, e.g. the protonated group could be shifted to higher and the non-protonated ones to lower frequencies than in the simple molecule. They are always higher than the stretching vibration in pure hydrazine.

We thank the Consiglio Nazionale delle Ricerche (Rome) for financial aid and Professors L. Cavalia and M. Nardelli for the use of the automatic equipment of the Centro di Studio per la Strutturistica Diffrattometrica.
[2/433 Received, 25th Febrvuary, 1972]
${ }^{13}$ A. Braibanti, F. Dallavalle, M. A. Pellinghelli, and E. Leporati, Inorg. Chern., 1968, 7, 1430.

14 J. Goubeau and U. Kull, Z. anorg. Chem., 1962, 316, 182.
15 R. L. Collins and W. N. Lipscomb, Acta Cryst., 1951, 4, 10.

[^0]: 11 J. Donohue, J. Mol. Biol., 1969, 45, 231.
 12 G. R. Burns, Inorg. Chem., 1968, 7, 277.

